80=-0.27x^2+3.3x+77

Simple and best practice solution for 80=-0.27x^2+3.3x+77 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80=-0.27x^2+3.3x+77 equation:


Simplifying
80 = -0.27x2 + 3.3x + 77

Reorder the terms:
80 = 77 + 3.3x + -0.27x2

Solving
80 = 77 + 3.3x + -0.27x2

Solving for variable 'x'.

Combine like terms: 80 + -77 = 3
3 + -3.3x + 0.27x2 = 77 + 3.3x + -0.27x2 + -77 + -3.3x + 0.27x2

Reorder the terms:
3 + -3.3x + 0.27x2 = 77 + -77 + 3.3x + -3.3x + -0.27x2 + 0.27x2

Combine like terms: 77 + -77 = 0
3 + -3.3x + 0.27x2 = 0 + 3.3x + -3.3x + -0.27x2 + 0.27x2
3 + -3.3x + 0.27x2 = 3.3x + -3.3x + -0.27x2 + 0.27x2

Combine like terms: 3.3x + -3.3x = 0.0
3 + -3.3x + 0.27x2 = 0.0 + -0.27x2 + 0.27x2
3 + -3.3x + 0.27x2 = -0.27x2 + 0.27x2

Combine like terms: -0.27x2 + 0.27x2 = 0.00
3 + -3.3x + 0.27x2 = 0.00

Begin completing the square.  Divide all terms by
0.27 the coefficient of the squared term: 

Divide each side by '0.27'.
11.11111111 + -12.22222222x + x2 = 0

Move the constant term to the right:

Add '-11.11111111' to each side of the equation.
11.11111111 + -12.22222222x + -11.11111111 + x2 = 0 + -11.11111111

Reorder the terms:
11.11111111 + -11.11111111 + -12.22222222x + x2 = 0 + -11.11111111

Combine like terms: 11.11111111 + -11.11111111 = 0.00000000
0.00000000 + -12.22222222x + x2 = 0 + -11.11111111
-12.22222222x + x2 = 0 + -11.11111111

Combine like terms: 0 + -11.11111111 = -11.11111111
-12.22222222x + x2 = -11.11111111

The x term is -12.22222222x.  Take half its coefficient (-6.11111111).
Square it (37.34567900) and add it to both sides.

Add '37.34567900' to each side of the equation.
-12.22222222x + 37.34567900 + x2 = -11.11111111 + 37.34567900

Reorder the terms:
37.34567900 + -12.22222222x + x2 = -11.11111111 + 37.34567900

Combine like terms: -11.11111111 + 37.34567900 = 26.23456789
37.34567900 + -12.22222222x + x2 = 26.23456789

Factor a perfect square on the left side:
(x + -6.11111111)(x + -6.11111111) = 26.23456789

Calculate the square root of the right side: 5.121969142

Break this problem into two subproblems by setting 
(x + -6.11111111) equal to 5.121969142 and -5.121969142.

Subproblem 1

x + -6.11111111 = 5.121969142 Simplifying x + -6.11111111 = 5.121969142 Reorder the terms: -6.11111111 + x = 5.121969142 Solving -6.11111111 + x = 5.121969142 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '6.11111111' to each side of the equation. -6.11111111 + 6.11111111 + x = 5.121969142 + 6.11111111 Combine like terms: -6.11111111 + 6.11111111 = 0.00000000 0.00000000 + x = 5.121969142 + 6.11111111 x = 5.121969142 + 6.11111111 Combine like terms: 5.121969142 + 6.11111111 = 11.233080252 x = 11.233080252 Simplifying x = 11.233080252

Subproblem 2

x + -6.11111111 = -5.121969142 Simplifying x + -6.11111111 = -5.121969142 Reorder the terms: -6.11111111 + x = -5.121969142 Solving -6.11111111 + x = -5.121969142 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '6.11111111' to each side of the equation. -6.11111111 + 6.11111111 + x = -5.121969142 + 6.11111111 Combine like terms: -6.11111111 + 6.11111111 = 0.00000000 0.00000000 + x = -5.121969142 + 6.11111111 x = -5.121969142 + 6.11111111 Combine like terms: -5.121969142 + 6.11111111 = 0.989141968 x = 0.989141968 Simplifying x = 0.989141968

Solution

The solution to the problem is based on the solutions from the subproblems. x = {11.233080252, 0.989141968}

See similar equations:

| h(t)=15t^2+120t+10 | | 4.9y+1.34=-13.85 | | 2x(458869786*58578)+27*2=2 | | .02x+0.01(6000-x)=96 | | 5-3y=8 | | 8.1x=-49.41 | | y-5x=2 | | 3x+5x=45 | | x-1=4.51 | | (x)/5=-2 | | m-7=4 | | (x)/5=2 | | -5y=1.85 | | 6p-12=4p | | 10p+3(5+2P)= | | (v+8)(v+11)= | | 20x+2=40 | | 2(-5)+4(-5)-(-5)+1= | | 6.00+2.50(h)=11.00 | | (x-2)/5=2 | | x+1.5=7.3 | | (x-2)/5=0 | | 3(-2)+(-2)+10+3(-2)= | | 5(x+4)=2(x-4)+4x | | 8(p-6)= | | x(5x+4)=0 | | y^4-3y^2-2y= | | -3+2(-3)+2(-3)+7= | | (x-2)/5=(x-1)/6 | | Log(7)16807=x | | 3x+7=17+x | | Log(9)3=x |

Equations solver categories